
A Discrete Logarithm Hash Function

for RSA Signatures

Ralf Senderek

Abstrat

To redue the omplexity of a ryptosystem it an be useful to have the hash

funtion's seurity based on the same foundation as the publi key enryption sheme.

In this respet the proposal of a disrete logarithm hash funtion one invented by

Adi Shamir o�ers both a lear onept and provable ollision-resistane. With both

ryptographi primitives based on modular exponentiation the possibility of dangerous

interation between the hash and the signature sheme an be avoided reliably one the

user's key material is arefully seleted. This paper fouses on the seurity impliations

whih have to be onsidered when the disrete logarithm hash is used to reate RSA

signatures, a purpose, for whih it proves to be partiularly useful.

1 Introdution

Real-world cryptosystems have become very complex. Not only numer-
ous kinds of complex features have been built into the cryptosystems like sub-
keys, message recovery keys, automated key server requests etc., which on the one
hand have made cryptosystems more comfortable and sometimes more insecure
[S-2000], but on the other hand a valuable characteristic has been sacrificed to the
impressive progress of modern cryptography, the ordinary user’s understanding
of what is really going on. Usually the basic components of a cryptosystem at least
comprise a public key mechanism based on the infeasibility of factoring or com-
puting discrete logarithms, a symmetric cipher to speed up the encryption process
and a standard hash algorithm which is used to create signatures.

A solution to the complexity problem might make it neccessary to reduce the
number of different crypto-algorithms to a bare minimum, giving preference to the
most concise and clear concepts available in the field. If one does not worry about
performance, there is really no need for a symmetric cipher, which will burden
the cryptosystem with a number of avoidable security weaknesses or risks only.
Given a proper padding of the plaintext [Bon] and sufficient key lengths, a public
key cipher like RSA can do all encryption with a simple, intuitive operation, mod-
ular exponentiation. This paper will explore the possibility to perform the hashing
with a similar intuitive mechanism, first proposed by Adi Shamir, which is not
only a clear concept but comes with a prove of collision-resistance, contemporary
standard hash functions all are missing.

1



2 Adi Shamir's proposal and the prove of

ollision-resistane

The hash function originally proposed by Adi Shamir years ago, relies on one sin-
gle step of modular exponentiation. Once the message has been converted into a
long integer, a hash of the message can be computed by

hash(x) = g

x

mod n (1)

given that both p and q are large primes which are being kept secret so that factoring
of the modulus n = p � q is computationally infeasible.

This hash function is provably collision-resistant, as Ronald L. Rivest pointed
out in a posting which I quote here [R-2003].

"Adi Shamir one proposed the following hash funtion:

Let n = p*q be the produt of two large primes, suh that

fatoring n is believed to be infeasible.

Let g be an element of maximum order in Z_n^* (i.e. an

element of order lambda(n) = lm(p-1,q-1)).

Assume that n and g are fixed and publi; p and q are seret.

Let x be an input to be hashed, interpreted as a

non-negative integer. (Of arbitrary length; this may be

onsiderably larger than n.)

Define hash(x) = g^x (mod n).

Then this hash funtion is provably ollision-resistant, sine

the ability to find a ollision means that you have an x and

an x' suh that

hash(x) = hash(x')

whih implies that

x - x' = k * lambda(n)

for some k. That is a ollision implies that you an find a

multiple of lambda(n). Being able to find a multiple of lambda(n)

means that you an fator n."

To complete the picture one has to bear in mind that Euler’s theorem states
that for every g which is relatively prime to �(n) = (p � 1) � (q � 1) the following

2



equation holds.

g

�(n)

mod n = 1 (2)

As �(n) is a multiple of �(n), we have k � �(n) = k

0

� �(n) = k

0

� t � �(n) for some
integers k’ and t.

For all k’ that divide k we can compute a collison using Euler’s theorem, because

x = x

0

+ k

0

� �(n)

and

hash(x) = g

(x

0

+ k

0

��(n))

mod n

= g

x

0

� g

k

0

��(n)

mod n

= g

x

0

�

�

g

�(n)

�

k

0

mod n

with (2) follows

hash(x) = g

x

0

� 1

k

0

mod n

= g

x

0

mod n

hash(x) = hash(x

0

)

In their original description the authors of the RSA cryptosystem argued that
computing �(n) and factoring n are equally hard problems [RSA-78, section IX B]
since �(n) can be used to factor n. With factoring of n being computationally infea-
sible, only an exhaustive search remains to find �(n).

3 The omplexity of a brute fore attak on �(n)

Of course an attacker wanting to find a collision of the hash function for a
given input message x will be successful once he has found �(n), which in general
is a much easier problem to solve than finding �(n), but as we can use ”Strong
Primes” [RS-98, see section 4] to build the hash function’s modulus, the range in
which an exhaustive search for a multiple of �(n) is successful will not be consid-
erably smaller than the range in which �(n) will be found.

A ”strong prime” (p�-strong) is a prime which is a large prime , i.e. its binary
length is jpj � 500 and the largest prime factor of p� 1 is also large, so that both �(n)

and �(n) will be at least 1000 bit long.

Let p and q be two p

�-strong primes of comparable length, i.e

q = p + d (0 � d � p)

3



We estimate the upper bound of the range R in which �(n) will be found assuming
that p and q are almost of the same length, so that the difference d is close to 0.
From jpj = jqj =

p

n follows

�(n)

max

= (

p

n� 1) � (

p

n� 1)

= n� 2

p

n+ 1

While the difference between p and q increases, �(n) decreases until it reaches its
lower bound when q = 2 p and p =

p

n

2

at

�(n)

min

= (

r

n

2

� 1) � (2

r

n

2

� 1)

= n� 3

r

n

2

+ 1

Therefore the difference between �(n)

max

and �(n)

min

will be

r = �(n)

max

� �(n)

min

= 3

r

n

2

� 2

p

n

=

r

n

2

�

�

3� 2

p

2

�

=

p

n �

�

3

p

2

� 2

�

r > 1=8 �

p

n

Thus an exhaustive search for �(n) in the range R = [�

min

; :::; �

max

℄ will re-
quire more than 2

497 steps and is clearly beyond todays available computational
abilities even if the requirements for the length of the prime factor in (p � 1) and
(q � 1) are reduced.

4 Interations between the hash funtion and the RSA

signature sheme

So far we have been focusing on the two major advantages which follow
from the design of the discrete logartithm hash function, the clear concept of ex-
ponentiation and its collision-resistance. On the other hand we can expect that
the dependance on the same fundamental operation (modular exponentiation) will
cause negative implications once the hash is used to create signatures with the RSA
signature scheme [Dam-88, p. 214]. It is important that these obvious concerns can
be destroyed when certain precautions are taken.

With RSA cryptosystems a signature of a message is created with a secret
signing key K

�1

= [d;N = p

0

� q

0

℄ and a public key K = [e;N ℄ is used to verify the

4



signature. Usually a hash value of the message text is signed to guard against the
multiplicative homomorphism of the RSA signature scheme. Without this protec-
tion it would be possible for everyone to create new valid signatures simply by
multiplication of any number of old signatures (mod N). This requires the hash
function to be multiplication free [And-93, section 3.3].

A signature is created using the secret decryption exponent d by computing

sig(x) = [hash(x)℄

d

mod N: (3)

To verify this signature with the public encryption exponent e one computes

[sig(x)℄

e

mod N = [hash(x)℄

e�d

mod N (4)

= hash(x)

which recovers a hash value that is easily compared with a fresh hash of the mes-
sage in question.

Although the hash function is not multiplication free by design we can show
that it is infeasible to exploit this characteristic to create forged signatures once the
modulus of the signature scheme (N) is different from the modulus (n) used for
hashing.

Let x and y be some arbitrary inputs. Signatures on these values can then be com-
puted

sig(x) = (g

x

mod n)

d

mod N

= (g

x

� a

1

n)

d

mod N

sig(y) = (g

y

mod n)

d

mod N

= (g

y

� a

2

n)

d

mod N

with a

1

and a

2

being two very large integer values. A different signature sig(z) can
subsequently be obtained through multiplication of old signatures.

sig(z) = sig(x) � sig(y) mod N

= (g

x

� a

1

n)

d

� (g

y

� a

2

n)

d

mod N

= [(g

x

� a

1

n) � (g

y

� a

2

n)℄

d

mod N

=

�

g

x+y

+ n [a

1

a

2

n� (a

2

g

x

+ a

1

g

y

)℄

�

d

mod N

=

�

g

x+y

+ n � t

�

d

mod N

sig(z) =

h

�

g

x+y

�

d

+ n � k

i

mod N (5)

for some very large unknown integer t and k.

Bad interaction between the signature and hashing algorithms is clearly in-
evitable if both moduli are equal, i.e. if p � q = p

0

� q

0, since

sig(z) =

�

g

x+y

�

d

mod N

= [hash(x+ y) + a

3

n℄

d

mod N

= [hash(x+ y)℄

d

mod N

= sig(x+ y)

5



Thus the moduli used for signing and hashing must be different.

In case both moduli are different, bad interaction can also occur, but as the
value of the large unknown integer k depends on the chosen input values only,
there are two different cases in which it is infeasible to select both inputs to match
the conditions for bad interaction.

Case 1 : N and n have one common prime factor, say p = p

0.

In this case bad interaction requires that k � q is a multiple of q0 which
implies that q0 divides k. To ensure this one must be able to factor N to
gain q

0 which is supposed to be infeasible.

Case 2 : N and n have no common prime factors.

In this case bad interaction requires that k�n is a multiple of N which im-
plies that N divides k. This will work without knowing the factorisation
of N , but it implies that the inputs are selected such that k has both large
unknown p

0 and q

0 as prime factors. The polynomial, that determines k

is of degree d � 1, so that solving (5) for a multiple of N is hard, if d is
almost of equal length as is N .

5 The hash funtion's dependene on key material

5.1 Hash keys

With the use of a hash modulus a new concept is introduced into hashing,
which seems to make the discrete logarithm hash more complicated compared to
the standard hash functions, whose output depends on the message to be hashed
only. In fact making the output depending on a user’s hash key as well has several
implications that must be considered.

The most obvious implication results from the fact that the person who pro-
duces the hash modulus clearly has an advantage over everyone who uses the
hash function [Pre-94, p.19], because this person can factor the modulus and has
the ability to create collisions. In my view this implies that it would be imprudent
to rely on a trusted third party to create a single hash modulus (and generator) to
avoid the dependence of the hash output on individual key material. On the con-
trary one should see the dependence on individual key material as an advantage
of the hash, because the user himself can guarantee the security of the hash output
as the selection process of his individual hash modulus and generator is entirely
under his own control. This of course implies that somebody creating individual
hash key material must be fully informed about all the requirements, and applica-
tions using the hash must check not only the integrity of the user’s hash key, which
would also include the binding to the user’s identity, but also the length of the key
material to reject moduli that can be factored according to recent knowledge about
factoring. For everyone who verifies a signature the fact, that a person has created

6



his own hash modulus is perfectly acceptable, as the person could easily sign a dif-
ferent message with his secret key. And for the person himself keping his primes
secret is the guarantee that nobody else will be capable of constructing collisions,
except by exhaustive search.

Another objection to use a hash modulus is that by chance two individuals
may chose the same modulus although their generator values may be different.
Cryptosystems using individual hash keys will require to check the key database
for common moduli but that would not exclude the very small risc of common
moduli in use when key databases are maintained locally on the user’s system
instead of a publicly available database like key servers. But this risc corresponds
to the use of RSA keys as well, where common moduli lead to the ability to forge a
signature directly.

Using an individual hash modulus bears the further advantage that it makes
birthday attacks much more difficult, because finding a pair of different messages
that hash to the same value would not only require a lot of precomputation but
would also work for one particular hash key only so that the whole process has to
be repeated for every other hash key.

5.2 Reommendations

When a user creates his hash key the following conditions should be met:

1) The primes p and q forming the hash modulus must be different from the
primes p0 and q

0 forming the public signing key’s modulus.
In general this condition is met when both moduli have considerably different
size.

2) Both primes p and q should differ by 1 bit in size. If the difference between p

and q is too small, the value �(n) may be found close to the upper boundary
described in section 3.

3) If possible p

�-strong primes shall be chosen to form the hash modulus.
A method to obtain such primes is described in [RS-98, section 5]. It basically
starts with a randomly chosen integer (p�) that tests positive for pimality,
subsequently checking p = a � p

�

+ 1 until a prime is found.

4) All created primes must be kept secret.

And finally:

5) The generator value g should be of maximum order to increase the difficulty
of calculating discrete logarithm values directly and to thwart precomputa-
tion attacks. It should be a generator of a prime order group to avoid weak-
nesses Ross Anderson has described for DSS and the Diffie-Hellman protocol
emerging from the use of smooth subgroups due to the selection of the gen-
erator value g. See [AV, section 2.3 and 3.1] for details.

7



6 Redution of the hash values

Standard hash functions usually produce an output value of fixed length,
typically 160 bit or 256 bit long. As the length of the discrete logarithm hash values
depends on the hash modulus alone it will vary, making it difficult for applications
to integrate the hash value into their internal data structure. Thus the demand for
a fixed length (i.e 256 bit) must be met for the discrete logarithm hash as well.

To ensure, that every bit of the long hash value contributes to the fixed-length
output value I recommend to split the long output into sections of 256 bit linking
all sections together with an XOR-operation. This is common practice in cryptosys-
tems that derive a keystream from a number of pointers into random data [FSW,
section 2] and should work for the reduction of the hash value size as well.
Although the reduction of the hash size may be required in special circumstances,
it is not necessary to create signatures as the public signing key would usually be
longer than the hash key, because as a long term key it would probably have an
extra security margin to make factoring as hard as possible.

7 Conlusions

We have seen that using the discrete logarithm hash function together with
the RSA signature scheme is not only possible but will produce signatures whose
security is based on the discrete log problem and on the infeasibility to factor large
numbers alone. Apart from the fact, that the hash based on modular arithmetic
will certainly be slower than standard hash functions, the complexity of the crypto-
system is clearly reduced with no loss of security.

As the hash depends on a user’s hash key material certain requirements are
essential while selecting the hash key. While it is only desirable to use strong
primes for the hash modulus, it is in fact neccessary to avoid degenerated gen-
erator values that allow computations in a smooth subgroup where the discrete
log problem is easy.

And finally applications that use the discrete logarithm hash must provide
a reliable means to verify the integrity of the key material the hash is using, as
this cannot be provided by the hash function. This does not introduce additional
complexity because it implies that the hash key will be an essential component
of the user’s public signing key, whose integrity is a fundamental requirement of
every cryptosystem in any case.

8



Referenes

[And-93] Ross Anderson: The Classification of Hash Functions
In: Codes and Ciphers (proceedings of fourth IMA Conference on
Cryptography and Coding, December 1093), published by IMA (1995)
pp 83-93

[AV] Ross Anderson and Serge Vaudenay: Minding your p’s and q’s
available at :
http://www.cl.cam.ac.uk/ftp/users/rja14/psandqs.ps.gz

[Bon] Dan Boneh: Twenty Years of Attacks on the RSA Cryptosystem
In: Notices of the American Mathematical Society (AMS), Vol. 46, No.
2, 1999, pp. 203-213
http://crypto.stanford.edu/~ dabo/papers/RSA-survey.ps

[Dam-88] I.B. Damgard: Collision free hash functions and public key signature
schemes
In: Advances in Cryptology, Proc. Eurocrypt 1987, LNCS 304,
D.Chaum and W.L. Price, Eds., Springer-Verlag, 1988, pp. 203-216

[FSW] Niels Ferguson, Bruce Schneier and David Wagner: Security Weak-
nesses in Maurer-Like Randomized Stream Ciphers
http://www.counterpane.com/maurer-stream.html

[Gib-91] J.K. Gibson: Discrete logarithm hash function that is collision free and
one way
In: IEE Proceedings-E, Vol. 138, No. 6, November 1991, pp. 407-410

[Pre-94] Bart Preneel: Cryptographic Hash Functions
In: European Transactions on Telecommunications, Vol. 5, No. 4, July-
August 1994, pp. 431-448

[RSA-78] Ronald L. Rivest, Adi Shamir and Leonard M. Adleman: A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems
In: Communications of the ACM, Vol 21, February 1978, pp. 120-126

[RS-98] Ronald L. Rivest and Robert D. Silverman: Are ’Strong’ Primes Needed
for RSA ?
In: The 1997 RSA Laboratories Seminar Series, Seminars Proceedings,
1997
http://theory.lcs.mit.edu/ ~ rivest/
RivestSilverman-AreStrongPrimesNeededForRSA.ps

[R-2003] Ronald L. Rivest: public communication
http://www.mit.edu:8008/bloom-picayune/crypto/13190

[S-2000] Ralf Senderek: Key-Experiments - How PGP deals with manipulated
keys
In: Datenschutz und Datensicherheit, Verlag Vieweg, Wiesbaden,
October 2000, pp. 603-608
http://senderek.de/security/key-experiments.html

9


